U-Pb reference materials and their ages

Zircon reference materials

This table summaries the zircon reference materials commonly used in geochronology, listed in order of their age. It is based on an earlier compilation by PlasmAge and has been updated to include some more recent characterisations. Tables of titanite/sphene, monazite and apatite reference materials are also available.

Some of these materials have been reported to contain modest but significant levels of Pb-loss. Prior to considering the use of any of these materials for quality control purposes, it is strongly recommended that analysts carefully review the cited publications as well as other reports that may exist in the scientific literature.

Name Age (Ma) Reference Initial amount Available grain size* U conc (µg/g)
OG-1 ~3463 1a <outcr>   46-393
KV01 3221.2 2a <outcr>   n/r
QGNG 1842.0 3a <outcr>   35-1151
AS3 1099.0 4a <outcr>   220-426
91500 1062.4 5a 238 g ≤ 2.0 mm 71-86
Mud Tank 701-722 6a multi-grain   6-36
GJ-1 ~600 7a ~4 g   212-422
LKZ-1 572.6 8a 0.8 g chips 183-818
SL13 572.2 9a n/r   n/r
M257 561.3 10a 5.14 g chips 578-1001
BB ~560 11a multi-grain chips 227-368
Z6266 / BR266 559.27 12a 2.5 g   871-958
SLZx 553-561 13a multi-grain   551-1106
GZ8 543.92 14a 3.8 g chips ~1305
SA01 535.08 15a 25 g 100-500 µm n/r
GZ7 530.26 14a 3.8 g chips ~680
M127 524.36 16a 2.5 g chips ~923
Temora2 416.78 17a <outcr> <rock> 61-398
Plešovice 337.13 18a <outcr> < 5 mm 465-3000
Qinghu 159.38 19a <outcr> 80-500 µm ~500-3000
SoriZ93 93.9 20a 110 mg < 250 µm 150-14,000
Tardree 61.3 21a <outcr>   n/r
GHR1 48.106 22a <outcr> < 250 µm ~600-1600
AusZ2 & Aus Z5 38.90 23a ~1.5 g chips ~240-319
OD_3 33.0 24a 1 g   100-1200
Penglai 4.393 25a <outcr> < 10 mm 26-48
* Only reported where the material is described as intended for distribution
<outcr> = multi-grain material from outcrop
<rock> = Hand specimens distributed for zircon extraction
n/r = not reported

References

1a. Stern et al. (2009). Geostandards and Geoanalytical Research, 33, 145-168
2a. Wie et al. (2020). Science China Earth Sciences, 63/11, 1780-1790
3a. Black et al. (2003). Chemical Geology, 200, 171-188
4a. Paces and Miller (1993). Journal of Geophysical Research, 98, 13997– 14013
5a. Wiedenbeck et al. (1995). Geostandards Newsletter, 19/1, 1-23
6a. Black and Gulson (1978). BMR Journal of Australian Geology and Geophysics, 3, 227–232
7a. Jackson et al. (2004). Chemical Geology, 211, 47-69
8a. Cheong et al. (2019). Minerals, 9, 325
9a. Claué-Long et al. (1995). SEPM Special Publication No. 54, 3-21
10a. Nasdala et al. (2008). Geostandards and Geoanalytical Research, 32/3, 247-265
11a. Santos et al. (2017). Geostandards and Geoanalytical Research, 41/3, 335-358
12a. Schoene et al. (2006). Geochemica et Comsochemica Acta, 70, 426-445
13a. Hu et al. (2023). Geostandards and Geoanalytical Research, 47/3, 509-533
14a. Nasdala et al. (2018). Geostandards and Geoanalytical Research, 42/4, 431-457
15a. Huang et al. (2020). Geostandards and Geoanalytical Research, 44/1, 103-123
16a. Nasdala et al. (2016). Geostandards and Geoanalytical Research, 40/4, 457-475
17a. Black et al. (2004). Chemical Geology, 205, 115-140
18a. Sláma et al. (2008). Chemical Geology, 249, 1-2, 1-35
19a. Li et al. (2009). Geochemistry, Geophysics, Geosystems, 10/4, Q04010
20a. Ogasawara et al. (2013) Island Arc, 22, 306-317
21a. Ganerød et al. (2011) Chemical Geology, 286, 222-228
22a. Eddy et al. (2019). Geostandards and Geoanalytcal Research, 43/1, 113-132
23a. Kennedy et al. (2014). The Canadian Mineralogist, 55, 409-421
24a. Iwano et al. (2013). Island Arc, 22, 382-349
25a. Li et al. (2010). Geostandards and Geoanalytcal Research, 34/2, 117-134